Spondylolysis – Update on Diagnosis & Management

David W. Kruse, M.D.
Orthopaedic Specialty Institute
Team Physician - University of California, Irvine
Team Physician & Medical Task Force Member - USA Gymnastics
Neither I, David Kruse, nor any family member(s), have any relevant financial relationships to be discussed, directly or indirectly, referred to or illustrated with or without recognition within the presentation.
Spondylolysis - Update

GOALS & OBJECTIVES

1. Review of Prevalence & Anatomy
2. Review/Update controversial aspects of spondylolysis:
 – Diagnostic Imaging
 – Bracing
3. Review goals of rehabilitation
4. Review return to play decision-making
Introduction \((1,2,9,13,14,19)\)

- Unilateral or Bilateral Defect – Pars Interarticularis
- Pars Interarticularis – junction of pedicle, articular facets, lamina
- Defect at L5 in 95% of cases
- Prevalence
 - General Population: 3-10%
 - Athletic Population: 23-63%
 - Gymnastics, Football, Weight Lifting, Rowing, Volleyball
- Adolescent Athletes:
 - Most common cause of back pain \((13,19)\)
Anatomy of a Pars Defect

- PARS INTERARTICULARIS
- LAMINA

[www.eorthopod.com] [Netter Photos]
Pathophysiology$^{(1,3,9,13)}$

• Multifactorial
 – +/- Pre-existing Dysplasia
 – Repetitive Microtrauma
 • Hyperextension, Rotation, Hyperlordosis

• Predisposing factors:
 – Hyperlordosis, Thoracic kyphosis
 – Iliopsoas inflexibility, Thoracolumbar fascial tightness
 – Abdominal weakness
 – Female athlete triad

• Bony Impingement – Pars of L5 sheared by Inferior articular process L4 and superior articular process S1
Pathophysiology

• Other predisposing factors:
 – Hyperlordosis
 – Iliopsoas inflexibility
 – Thoracolumbar fascial tightness
 – Abdominal weakness
 – Thoracic kyphosis
 – Female athlete triad

• Bony Impingement – Pars of L5 sheared by Inferior articular process L4 and superior articular process S1
Anatomy of Bony Impingement
Clinical Presentation(12,13,14,19,20,25)

- Three Classic Patient Types:(13,25)
 1. Female, Hyperlordotic, Hypermobile
 2. Male, Hypomobile/Inflexible, Tight paraspinal
 3. New to a sport, deconditioned, poor core
Clinical Presentation

• Examination:
 – Hyperlordosis
 – Hamstring inflexibility
 – Pain on extension (add side-bending to affected side - Kemp Test)
 – Lumbosacral tenderness and muscle spasm
 – Stork test: low specificity\(^{(14,20)}\), low sensitivity\(^{(19)}\)
 – Various other functional/provocative tests\(^{(19)}\)
Clinical Exam

• Prospective Case Series – Ability of clinical tests to distinguish between causes of back pain

• Subjects:
 – 25 in Case group: >3 weeks LBP, 13-20yo, 56% Male
 – 13 in Control group

• Methods:
 – Both groups:
 • Clinical exam protocol
 • All underwent MRI L-spine
 – Case group: CT of L4/L5

• Clinical Exam Protocol:
 – Gait pattern
 – Inspection – scoliosis, lordosis, LLD, etc.
 – Palpation
 – Neurological examination
 – Functional testing
 – Multiple provocative tests (Stork, Percussion, Spring, Coin, Hook/Rocking tests)

• Results:
 – No clinical test, alone or in combination, could distinguish between spondy and other etiologies
Spondylolysis - Imaging

Leone *Skeletal Radiol* 2011
Imaging Controversy

• Despite spondylolysis being a well recognized and published condition for decades...we still don’t have a consensus on imaging...due to the pros and cons for each modality, radiation exposure in adolescent spines, and growing technology helping MRI to potentially become a more sensitive option.
Imaging – Radiography\(^{(1,5,9)}\)

- A/P and Lateral – Eval DDX & Listhesis
- Oblique – Observe radiolucent pars defect:
 - Acute: Narrow, irregular
 - Chronic: Smooth, Rounded
- Appreciable on Lateral view if listhesis present

Leone _Skeletal Radiol_ 2011
Imaging - Radiography

• Utilization of **Oblique** Images

 – Pro:
 • Potential for quick confirmation of clinical suspicion
 • If seen – characterize chronicity

 – Con:
 • Low sensitivity
 – Miss occult and early stress lesions
 • Additional radiation
 • Most practitioners likely to utilize secondary imaging regardless
Radiation Exposure9
(mSv = milisievert, measurement of radiation dose)

- U.S. Natural Background Exposure: 3 mSv/year
- Chest X-ray: 0.1 mSv
- L-Spine X-ray, 6 View: 1.5 mSv
- SPECT: 5 mSv
- CT: 10-20 mSv
Imaging - SPECT\(^{(1,5,6,9,12,16)}\)

• Pros:
 – High Sensitivity and can localize lesion
 – Early diagnosis of active lesions
 – Differentiate between Acute & Chronic Non-Union:
 • Increased Signal: Osseous activity/Healing Potential
 • Absence of Signal: Nonunion/Low Healing Potential
 – Correlates with pain etiology (improved treatment outcomes\(^{16}\))
Imaging - SPECT

• Cons:
 – Poor Specificity - potential for false positives
 • Positive SPECT shown in asymptomatic athletes
 • DDx for Positive Bone Uptake – Infection, Tumor, Arthritis
 – Radiation exposure, intravenous injection, increased time for completion
 – Cannot detect chronic non-union
 – Cannot distinguish if incomplete fx is in healing (osteoblastic) or developing (osteoclastic) phase
Imaging - SPECT\(^{(9)}\)

→ Due to low specificity, a positive SPECT needs to be followed up with targeted CT imaging.

→ Because of increasingly reliable MR sequencing and the amount of radiation exposure from combo SPECT & CT scanning, there are increasing recommendations to abandon SPECT screening.

Leone *Skeletal Radiol* 2011
Imaging – Computed Tomography (1,2,5,6,9,14)

- Pros: Identify anatomical details of a pars defect
 - Complete or Incomplete Pars Fracture:
 - Most Sensitive & Specific independent imaging modality
 - Can help stage the chronicity of the lesion:
 - Wide/Sclerotic – Chronic
 - Narrow/Non-corticated margins - Acute
 - Evaluate bony healing, surgical planning
 - More specific than SPECT
Imaging – Computed Tomography

• Cons:
 – Radiation exposure
 – Not good at:
 • Active vs. Inactive fracture
 • Early Stress Reaction – No Cortical Defect
 – Limited evaluation of associated conditions and other differential diagnosis
Imaging - CT Options\(^{(2,9)}\)

- Reverse-Angle Gantry CT:
 - Perpendicular to Pars Lesion\(^{(2)}\)
 - Decreasing use due to advances in CT technology

- Newer Technology:
 - Rapid, Thin-Slice
 - Increased anatomical coverage
 - Higher spatial resolution
 - Sagittal Reconstructions
 → Results in: High resolution 2D reformations, 3D Rendering

Leone Skeletal Radiol 2011
Imaging - SPECT + CT\(^{(9,13)}\)

- Combination
 - SPECT: highest sensitivity for bone activity
 - CT: highest anatomical specificity

- Neg CT + Pos SPECT:
 - Stress response, Pre-lysis
 - Early incomplete
 → Good prognosis for healing and bony union

- Pos CT + Neg SPECT:
 - Non-union chronic lesion
Imaging - MRI \((1,5,9,10,11,13,14,24)\)

- **Pros:**
 - Sensitive for early active lesions
 - Reliable for:
 - Early/Stress lesions
 - Acute complete lesions
 - Chronic lesions
 - Absence of radiation
 - Visualization of other spinal disorders

Leone *Skeletal Radiol* 2011
Imaging - MRI

• Cons:
 – Lower Sensitivity – Mostly involving Incomplete Fractures\(^{(9,24)}\)
 – Lacks ability to grade the lesion, detect bony healing
 – Dunn, *Skeletal Radiol, 2008*\(^{(11)}\)
 • Comparative study of incomplete fxs – MRI vs. CT
 • MRI: Limited ability to fully depict cortical integrity
Imaging - MRI

• Highly dependent on sequencing...some of the poor sensitivity documented in the literature potentially due to inadequate sequencing:
 – Sequencing best suited for other dx (disc)
 – Slice thickness inadequate
 – Not multiplanar
 – Limited edema sensitive sequencing
Imaging - MRI Sequencing

• Ideal Sequencing:
 1. Edema Sensitive – STIR Images (T2 Fat Sat)
 • Visualize bony edema: Active & Early lesions
 2. Cortex (Marrow) Sensitive – T1 (or T2) Non Fat Sat
 • Visualize fracture
 • Good for anatomy – Seeing cortical bone, high contrast between marrow and signal void of disrupted cortex
 3. Multiplanar – Axial, Sagittal, Coronal Oblique
 4. Thin Slice – ≤ 3mm
MRI – Complete Fracture

Leone *Skeletal Radiol* 2011

T2 – Fat Sat: Edematous Change

T1 Sequencing: Complete Fx Cleft
MRI - Incomplete Fracture

- **STIR Sequence:** Edematous Change
- **T1 Sequence:** Defect Inferior Cortex
- **CT Imaging:** Incomplete Cleft Pedicle

Leone *Skeletal Radiol* 2011
Hollenberg, *Spine*, 2002\(^{10}\)

- Proposed Classification System:
 - Grade 0: Normal Pars
 - Grade 1: Stress Reaction – Marrow Edema, Intact Cortex
 - Grade 2: Incomplete Stress Fx – Marrow Edema, Incomplete Cortex Fx
 - Grade 3: Acute Complete Fx – Marrow Edema, Complete Pars Fx
 - Grade 4: Chronic Fx – No Marrow Edema, Complete Pars Fx

- Distinguishes:
 - Stress Rxn vs. Active Fracture vs. Inactive Fracture
MRI – Early Acute Lesions
Kobayashi, AJSM, 2013(14)

• Prospective study to assess the use of MRI for detection of early active spondy lesions
• Document MRI diagnosis in those cases occult on x-ray
• 200 athletes with LBP, Ages 10-18, 72% Male:
 – Unclear or No findings on X-ray
 • 96% No Findings, 6% Unclear Findings
 – MRI performed on all 200 athletes
 • Sag T2, Sag STIR, Axial T1, Axial T2, Axial STIR, 4-5mm slices
 – CT performed as follow-up to MRI if edema present
Kobayashi, *AJSM*, 2013\(^{(14)}\)

- **Results:**
 - MRI – Noted spondy in 97 of 200 athletes (48.5%)
 - Follow-up CT – 92 of 97 positive MRI cases:
 - Nonlysis Lesions: 43%
 - Early Stage: 49%
 - Progressive Stage: 8%
 - Terminal Stage: 0%

Leone *Skeletal Radiol* 2011
Kobayashi, AJSM, 2013(14)

• Discussion:
 – MRI useful in recognition of early active spondy
 – Recommend:
 • Use of MRI for initial screening after negative x-ray
 • For positive MRI - Should have localized CT for staging
 – No comparison to SPECT regarding sensitivity for early active lesions
 – For the 51.1% with negative MR:
 • No follow up CT
 → No MRI vs. CT sensitivity comparison
Additional MRI Comparative Studies

• **Campbell, et al. Skeletal Radiol, 2005**\(^{(24)}\)
 – Compared MRI to SPECT+CT
 • Concluded Effective & Reliable first-line imaging modality
 • Concluded MRI can replace SPECT
 • Not adequate for grading incomplete defects (3-4mm Slices)

• **Masci, et al. BJSM, 2006**\(^{(20)}\)
 – Compared MRI to SPECT only, CT only, & SPECT+CT
 • MRI equal to CT in detection of defect (did not specify complete vs. incomplete)
 • MRI decreased sensitivity compared to SPECT for stress lesion
 • Concluded MRI inferior to SPECT+CT for general detection of all types of lesions
 • High rate in this study of MRI false negatives
 • MRI sequencing – larger slice thickness, limited planes

- Prospective Case Series
- Methods:
 - Case & Control groups:
 - MRI L-spine
 - Sag T1, Sag T2, Cor STIR
 - Slice thickness not mentioned, No Axial Views
 - Case group: Also received CT of L4/L5, thin-slice
- Results:
 - 22/25 case athletes had positive MRI findings
 - 13/25 case athletes: +MRI Active Spondy
 - Personal communication with author:
 - Athletes in case group with (–)MRI for Spondy also had (–)CT
MRI – Ancillary Findings\(^{(9)}\)

- Aid in diagnosis:
 - Widened sagittal diameter of spinal canal
 - Posterior vertebral body wedging – Lumbar Height Index
 - Effect of spondylolisthesis vs. predisposing factor
 - Present in cases of spondy without listhesis
 - Reactive edema in pedicle adjacent to pars defect
- Direct Findings + Ancillary Findings \(\rightarrow\) MRI approaches a similar Sensitivity as CT.
Synopsis of Imaging Debate

• Positives and Negatives for all
• Important to know the limitations of your imaging options
• Important to know the imaging techniques and sequences utilized by your imaging centers - MRI
Synopsis of Imaging Debate$^{(9,13)}$

- **Reasons for SPECT/CT:**
 - Confidence in the combination of:
 - Sensitivity (SPECT) and specificity (CT)
 - MRI negative & athlete not responding to current plan of care
 - MRI contraindicated
 - Ideal MRI sequencing not available
- **Follow-up CT:** Grading necessary, assess bony healing
Synopsis of Imaging Debate

• MRI as first-line?:
 – Visualize stress reactions, Acute and Chronic lesions
 – No radiation in pediatric population
 – Rule out other pathology
 – Know capabilities of your imaging center

• MRI’s downside: Lower sensitivity for incomplete fractures, can’t assess bony healing or grade of the lesion
Potential Imaging Protocol

• Clinical Exam + Lumbar X-ray (AP & Lat)

• Initial screen with MRI:
 – Sensitive for early active lesions
 – Identify active vs. inactive lesions
 – Localize pathology
 – Rule out other differential diagnosis
 – Minimize Radiation

• Localized CT - for positive Spondy on MRI:
 – Staging of lesion
 – Baseline for follow up imaging – bony healing
Spondylolysis - Management
Conservative Management

• Overall:
 – Rest from sport – stop repetitive extension/rotation
 – Achieve pain-free status
 • Rest period with or without bracing
 – Rehabilitation
 – Return to Play transition

• Debate:
 – Initial length of time restricted from sport
 – Bracing:
 • Decision to utilize bracing
 • Type of brace
 – Time course for full return to sport
Spondylolysis - Bracing\(^{(1,5,6,7,8,9,12,17,18)}\)

- **Types of Braces:**
 - Thoraco-lumbar-sacral orthosis (TLSO) – antilordotic
 - Lumbo-sacral orthosis (LSO)
 - Corset/Soft Brace

- **Controversy:**
 - Lack of controlled studies – question efficacy
 - Similar outcomes despite type of brace
 - Maintain lordosis vs. Antilordotic
 - Soft corset vs. Hard Shell Orthotic
 - Bony healing with and without bracing
 - Is it the immobilization or the forced compliance with activity restriction?
Spondylolysis - Bracing

Controversy:

- Lack of controlled studies – question efficacy
- Similar outcomes despite type of brace
 - Maintain lordosis vs. Antilordotic
 - Soft corset vs. Hard Shell Orthotic
- Bony healing with and without bracing
- Is it the immobilization or the forced compliance with activity restriction?
Spondylolysis - Bracing

• Historical Perspective:
 – Steiner/Micheli, 1985\(^{(7)}\): documented success with bracing protocol
 • 6 months, 23 hrs/day
 • 6 months wean from brace
 – Jackson/Wiltse, 1981\(^{(18)}\): documented success with activity restriction only, no bracing
Referenced Bracing Strategy\(^{(13,22,23)}\)
d’Hemecourt, *Orthopaedics*, 2000\(^{(23)}\)
Micheli, *Clin Sports Med*, 2006\(^{(22)}\)

- **Initial:**
 - Removed from sport, Boston brace 23hrs/day
 - Begin physical therapy

- **4 to 6 weeks:**
 - If pain-free & progressing well in PT
 - Return to sport in brace

- **4 months:**
 - If bony healing or pain-free nonunion: wean brace
 - If pain and no healing: consider bone stim

- **9-12 months:**
 - If persistent pain and nonunion: surgical fixation
Additional Brace Parameters$^{(5,7,8,9)}$

- If acute, (+)SPECT/MRI & (-)CT:
 - 3-6 months
 - Rest from aggravating activity
 - Attempt bony healing
 - Most recommend brace for acute lesions: multiple proposed strategies

- Chronic Lesions:
 - Rest until pain-free, no brace, then start other conservative measures
 - Brace if can’t become pain-free
Bracing Literature Update
Sairyo K, J Neurosurg Spine, 2012\(^{(15)}\)

* Examine which spondylolysis lesions will go on to bone healing with bracing and how long it takes
 - 63 pars defects, 37 patients, Ages 8-18
 - Followed for bony healing with bracing
 - CT & MRI performed:
 * Early, Progressive High Signal (MR edema), Progressive Low Signal (no MR edema), Terminal
 - Brace: molded plastic TLSO
 - Repeat CT at 3mo and 6mo

- **Results:**
 - Early – 94%, 3.2 mo
 - Progressive/High Signal – 64%, 5.4 mo
 - Progressive/Low Signal – 27%, 5.7mo
 - Terminal – 0%

- **Supports early (CT stage) and active (MR edema) lesions have best prognosis for bone healing**

- **Limitations:**
 - No non-braced control group
 - Study looking at bone healing, not pain relief or return to sport
Spondylolysis Rehabilitation$^{(5,12,13)}$

- General Principles:
 - Start early
 - In conjunction with pain reducing stage
 - Progress through generalized range of motion and spine stabilization
 - Kinetic chain assessment & resistance training
 - Sport-specific retraining
Rehabilitation of the Gymnast

(Courtesy of Dr. Larry Nassar - USAG Medical Director)

• Phase 1: Initiate at time of Dx
 – Neutral Spine - Correct Imbalances/Core Stability

• Phase 2: Starts when pain-free
 – Start into extension, strengthening in extension

• Phase 3: Once tolerating extension in PT
 – Start sport-specific extension work in the gym

• Phase 4: Final progression
 – Gymnastics-specific progression, finish correction of baseline imbalances/mechanical deficiencies
Rehabilitation of the Gymnast

• Common deficiencies in the gymnast:
 – Shoulder & Thoracic mobility restrictions
 – Lower Crossed Syndrome:
 • Hip flexor/quad/IT band/erector spinae flexibility
 • Gluteus medius and core strength
 – Dyskinetic posterior chain firing patterns
 • Hamstring, Gluteus, Erector spinae
Rehabilitation of the Gymnast

(Courtesy of Dr. Larry Nassar - USAG Medical Director)
Natural Progression Spondylolisthesis\(^{(1,4,5,13)}\)

- **Bilateral Pars Defect**
 - 70% associated listhesis
 - Cases of low-grade slippage have 5% risk of progression
- **Fortunately low documented risk of progression in athletes**
- **Highest Risk for Progression**
 - >50% slippage at diagnosis
 - Skeletally immature or <16yo
 - Significant decreased risk with increased age
- **Follow-Up – Skeletally Immature**
 - Lateral Radiographs Q6-12mo
Return To Play(21)

- Successful completion of a comprehensive physical therapy program
- Can accomplish full and pain-free range of motion
- Return of sport-specific strength and aerobic fitness
- Able to perform sport-specific skills without pain
References

References

References

Contact Information

• David W. Kruse, M.D.
• Orthopaedic Specialty Institute
 – Orange, CA
 – 714.937.4898
• krusedw@gmail.com